2017/10/24 13:01:11

Автопилот
Беспилотный автомобиль

Автомобильная индустрия претерпевает существенную трансформацию: крупнейшие производители машин совместно с ИТ и телеком разработчиками идут к созданию транспортных средств с возможностью полностью автономного вождения. Тренд уже очевиден – в будущем беспилотный транспорт станет массовым явлением, но на пути к эпохе полностью автономных автомобилей еще предстоит решить массу задач. .

Содержание

Беспилотный автомобиль — транспортное средство, оборудованное системой автоматического управления, которое может передвигаться без участия человека. Автопилот — устройство или программно-аппаратный комплекс, ведущий транспортное средство по определённой, заданной ему траектории. Наиболее часто автопилоты применяются для управления летательными аппаратами (в связи с тем, что полёт чаще всего происходит в пространстве, не содержащем большого количества препятствий), а также для управления транспортными средствами, движущимися по рельсовым путям. Современный автопилот позволяет автоматизировать все этапы полёта или движения и другого транспортного средства.

Общие принципы работы беспилотного автомобиля

Общие принципы работы у всех беспилотных автомобилей примерно одинаковы. Предлагаем ознакомиться с ними на примере автомобиля Toyota Prius в версии Google.

Принцип работы беспилотного автомобиля Toyota Prius в версии Google. Secret-seo.ru

Позже разработчики приходят к идее использовать совместно с указанным оборудованием высокоточные карты. Автономное передвижение только лишь с помощью датчиков требует постоянного сканирование окрестности и, как результат, огромных вычислительных мощностей. Высокоточные карты позволяют автомобилю передвигаться даже по дорогам, не имеющим специальной разметки, а датчики предполагается использовать только для своевременной реакции автомобиля на изменения ситуаций на дорогах (переход дороги пешеходами, обгоны и др.).

Технологии беспилотного автомобиля относятся к классу решений искусственного интеллекта. Подробнее см. Искусственный интеллект (ИИ, Artificial intelligence, AI)

В мре идет активная разработка ITS нового поколения с большим спектром возможностей, их стандартизацией занимаются такие организации, как ETSI, IEEE, 3GPP и другие. Современные системы ITS решают такие задачи, как контроль допуска, управление и оплата парковками, предоставление информации о движении и оплата парковки, управление грузоперевозками, контроль трафика и т.д.

Одним из основных применений ITS является помощь водителю транспортного средства. За счет кооперативной осведомленности транспортное средства может получить оповещение об опасности, индикатор медленно идущих машин, предупреждение о столкновении на перекрестке, индикатор о приближении мотоцикла и т.д.

Водителю будут доступны оповещения о таких ситуациях, как поломка электрического освещения, неверная дорога, стационарная машина (авария или поломка транспортного средства), проведение дорожных работ, риск столкновения, оповещение о состоянии дорожного движения и оповещение о смене сигнала. Децентрализированные базы данных будут предоставлять информацию об опасных зонах, осадках, сцеплениях на дорогах, видимости, ветре и др.

Следующим шагом станет использование ITS в беспилотных автомобилях. Базовым компонентом беспилотников будут внешние камеры и радарное оборудование, отмечается в отчете НИИР. Но именно обмен информацией между автомобилями по средствам V2V-систем вместе с получением транспортными средствами через V2I-системы информации о ситуации на дорогах и актуальных цифровых карт дорог позволит обеспечить безопасное и эффективное дорожное движение беспилотников.

Типы ИТС: V2V и V2I

Первый тип систем - «транспортное средство - транспортное средство» (vehicle-to-vehicle, V2V) - обеспечивают безопасное вождение за счет связи между автомобилями на перекрестках с плохой видимостью. V2V-система может предупреждать водителей об опасности лобового столкновения, бокового столкновения, заднего столкновения, уведомлять о неисправности транспортного средства, предоставлять дорожную и нормативную информацию

Например, две машины, невидимые друг другу на перекрестке или на повороте, через V2V-систему могут обменяться друг с другом координатами и значениями скоростей для избежания столкновения. Аналогичным образом автомобиль, приближающийся к концу пробки, получит информацию с координатами и скоростями ближайших транспортных средств.

Второй тип систем безопасного движение - «придорожная инфраструктура - транспортное средство» (vehicle-to-infrastracture, V2I) - обеспечивают передачу информации (сигнал и нормативная информация и т.д.) от придорожного оборудования к автомобилю через средства радиосвязи. Например, придорожные сенсоры на перекрестке обнаружат машины, которые собираются пересечь перекресток или повернуть, и передадут информацию другим приближающимся машинам по средствам V2I-систем.

Технология V2X: использование Wi-Fi и сотовых сетей

Основная статья Vehicle-to-Everytning (V2X)

Степени автономности автомобилей

По классификации SAE International систем помощи водителю или ADAS (Advanced Driver Assistance System) существует шесть классов автономности от уровня 0 — полностью ручное управление с возможностью предупреждения об опасных ситуациях на дороге, до 5 — полностью беспилотный автомобиль. Уровень ADAS 1 предусматривает работу более продвинутой системы предупреждения об опасности столкновения с автомобилями, пешеходами, а также о пересечении линии разметки, идентификацию дорожных знаков и т. п., а также вмешательство в систему управления. Второй уровень — это более активная помощь водителю (руление, торможение, удержание в полосе и т. д.). Третий уровень — автономное движение на заданных участках дороги, которое требует от водителя лишь частичного надзорного контроля. Четвертый уровень ADAS — это автономное движение автомобиля в определенных режимах, при котором человек уже не может повлиять на управление даже в критических ситуациях. Пятый уровень — полная автономность транспортного средства, когда водитель лишь задает конечный пункт маршрута, а весь процесс передвижения полностью ложится на искусственный интеллект автопилота.

Преимущества и недостатки

Преимущества

  • перевозка грузов в опасных зонах, во время природных и техногенных катастроф или военных действий.
  • снижение стоимости транспортировки грузов и людей за счёт экономии на заработной плате водителей.
  • более экономичное потребление топлива и использование дорог за счёт централизованного управления транспортным потоком.
  • экономия времени, ныне затрачиваемого на управление ТС, позволяет заняться более важными делами или отдохнуть.
  • у людей с ослабленным зрением появляется возможность самостоятельно перемещаться на автомобиле.
  • минимизация ДТП, человеческих жертв.
  • повышение пропускной способности дорог за счёт сужения ширины дорожных полос.

Недостатки

  • Ответственность за нанесение ущерба.[1]
  • Утрата возможности самостоятельного вождения автомобиля.[2]
  • Надёжность программного обеспечения.[3]
  • Отсутствие опыта вождения у водителей в критической ситуации.[4]
  • Потеря рабочих мест людьми, чья работа связана с вождением транспортных средств.[5][6]
  • Потеря приватности.[7]
  • Минирование беспилотных автомобилей.[8]
  • Этический вопрос о наиболее приемлемом числе жертв, аналогичный проблеме вагонетки, стоящий перед компьютером автомобиля при неизбежном столкновении.[9][10]

Некоторые системы полагаются на инфраструктурные системы (например, встроенные в дорогу или около неё), но более продвинутые технологии позволяют симулировать присутствие человека на уровне принятия решений о рулении и скорости, благодаря набору камер, сенсоров, радаров и систем спутниковой навигации.

Вызовы на пути к беспилотнику

В начале 2017 года корреспондент TAdviser побывал на Мобильном конгрессе в Барселоне и ознакомился с развитием технологий беспилотных автомобилей.

Коммуникации

На пути к беспилотным автомобилям еще предстоит решить много технологических и юридических задач. Разработчики сходятся во мнении, что одна из ключевых – обеспечить автомобили возможностями высокоскоростного сетевого подключения. Сети пятого поколения рассматриваются как драйвер технологий автономного вождения: они позволят автомобилю максимально оперативно получать информацию и взаимодействовать с другими автомобилями и окружающей его инфраструктурой.

Минимальные задержки передачи информации, которые ожидаются в 5G, являются критическими для беспилотных автомобилей при их массовом использовании. Высокоскоростная связь позволит мгновенно принимать и передавать данные от одного автомобиля к другому. Информация об изменениях в движении одного автомобиля, например, о торможении, позволит сразу же корректировать действия окружающих его машин.

По состоянию на начало 2017 года стандарта связи 5G еще не существует. В его разработке задействованы регуляторы, мировые телеком-компании и производители оборудования. 3GPP (3rd Generation Partnership Project) — организация, утверждающая международные стандарты сотовой связи – планирует полностью завершить работу по тестированию и стандартизации технологий беспроводной связи пятого поколения в 2020 году.

В феврале 2017 года Международный союз электросвязи опубликовал первую версию рабочего черновика спецификации, описывающей сеть 5G. Проект документа устанавливает планку ожидаемой производительности нового стандарта IMT-2020: предполагается, что средняя скорость скачивания в 5G-сетях для пользователей составит 100 мегабит в секунду, а загрузки — 50 Мбит/с. При этом время ожидания не превысит 4 мс (для 4G LTE этот значение составляет около 20 мс).

Сети 5G должны ускорить массовое внедрение технологий беспилотного вождения

Для коммуникации с окружающими объектами также разрабатываются специальные системы, позволяющие автомобилю обмениваться данными с другими объектами. Технология vehicle-to-everything (V2X) по беспроводной связи позволяет автомобилю получать предупреждения о дорожных условиях и приближающихся автомобилях задолго до того, как они появятся в его поле зрения. Для этого и окружающая инфраструктура должна быть «умной». Например, светофоры, дорожная разметка, дорожные знаки.

Разработку интерфейса для систем V2X, которые смогут работать с сетями нового поколения, ведет, например, Qualcomm. В компании рассказывают, что планируют до конца года провести тестирование прототипа в составе конечных устройств в Германии в партнерстве с рядом компаний, в числе которых Ericsson, Audi.

В марте 2017 года руководитель разработки мобильных онлайн-сервисов Volkswagen Николай Раймер (Nikolai Reimer) отмечал, что одна из ключевых задач – обеспечить машины возможностями связи. Этот вопрос компания считает настолько важным, что около трех лет назад даже приобрела европейский центр исследований и разработок Blackberry с командой примерно из 200 инженеров.

На базе этого подразделения Volkswagen теперь развивает центр компетенции по решениям связи для своих автомобилей. Он обеспечивает разработку технологий, которые смогут применяться в подключенных автомобилях в будущем. В их числе – блоки управления связью. Volkswagen рассчитывает в будущем обеспечивать себя ими сам. Николай Раймер считает, что компания должна больше инвестировать в эти разработки.

Всевидящее око

Автономный автомобиль должен знать с точностью до сантиметров, где именно он находится и что находится далее на дороге вне зоны текущей физической видимости. В картографической компании Here (ранее принадлежала Nokia) отмечают, что карты высокой точности – фундаментальный элемент в дополнение к сенсорам и камерам для того, чтобы беспилотный автомобиль мог ориентироваться в окружающей его обстановке.

Карты должны отражать и местоположение автомобиля, и позволять ему знать, что находится дальше, за поворотом, чего не могут обеспечить камеры и сенсоры. Тогда автомобиль сможет выстраивать не реактивную, а проактивную стратегию вождения, говорит Алекс Манган (Alex Mangan), руководитель продуктового маркетинга Here.

Для тестирования своих беспилотных автомобилей Google, например, предварительно сам строит детальные 3D-карты на пилотных маршрутах, учитывающие даже небольшие особенности дорог. Для сбора данных, на основе которых будет строиться карта, сотрудники компании предварительно специально ездят по дорогам. В случае с тестовыми маршрутами это посильная задача, однако, когда требуется создать карты для дорог протяженностью в миллионы километров, она выглядит сложно реализуемой. Особенно с учетом того, что однажды созданные карты необходимо поддерживать и обновлять – картина на дорогах может меняться очень часто.

Автономный автомобиль должен знать, что происходит не только в зоне видимости, но и за поворотом

Упростить создание точных карт для автомобилей может сотрудничество с автопроизводителями: их машины, оснащенные сенсорами и радарами, могут «делиться» получаемой с дорог информацией с разработчиками картографических сервисов. За счет этого карты могли бы обновляться буквально в режиме реального времени.

В феврале 2017 года производитель решений для беспилотных автомобилей Mobileye и BMW объявили о подобном сотрудничестве. Его целью является сбор картографических данных для самоуправляемых машин. Автомобили BMW 2018 модельного года будут оснащаться камерами и софтом MobilEye для сбора информации, необходимой для обновления цифровых карт высокого разрешения.

С целью ускоренного создания и обновления карт BMW и Mobileye будут передавать данные, генерируемые в рамках партнерства, компании Here. Алекс Манган из Here полагает, что индустрия должна объединиться вокруг идеи обмена данными – это может ускорить распространение технологии беспилотного вождения. Помимо BMW, компания планирует договариваться и с другими производителями автомобилей об аналогичной передаче данных, включая Audi и Mercedes.

Распознавание дорожных знаков и разметки

Как удалось обнаружить в начале августа исследователям из университета Вашингтона, системы машинного зрения, применяемые в машинах с автопилотом для распознавания дорожных знаков, легко сбить с толку: для этого достаточно определенным образом разместить на знаках небольшие наклейки.[11]

В ходе эксперимента исследователи наклеили на одном из знаков Stop несколько черных и белых стикеров, на другом разместили дополнительные надписи сверху и снизу от надписи Stop, а третий знак сделали более блеклым. При этом подчеркивается, что во всех случаях дорожные знаки оставались вполне узнаваемыми и читались хорошо.

Фото: 24gadget.ru

Тем не менее, система автопилотирования в подавляющем большинстве попыток дала сбой: вышеописанные манипуляции со знаками Stop приводили к тому, что вместо них автопилот «видел» знак ограничения скорости.

Фото: 24gadget.ru

Результаты эксперимента навели исследователей на мысль о том, что злоумышленники могут самостоятельно делать подобные наклейки, чтобы заставить компьютерную систему автомобиля неверно распознать знак дорожного движения.

В качестве способа борьбы с обнаруженной уязвимостью исследователи предлагают реализовать в системе автопилота алгоритмы, дополнительно анализирующие контекст, в котором встретился знак. В частности, алгоритмы помогут системе определить, что знак расположен в ненадлежащем месте (например, Stop — на скоростном шоссе или ограничение скорости в 100 км/ч — на городской улице), что поможет избежать аварийной ситуации.

Как отмечается, испытанию подверглась не система какого-то конкретного автопроизводителя, а стандартный для всех производителей алгоритм работы автопилота. Результаты исследования, по мнению авторов, демонстрируют степень уязвимости автоматики. Использованные на дорожных знаках искажения моделировали типичные поражающие факторы городской среды: акты уличного вандализма, порчу покрытия знака из-за погодных условий и так далее.

В ходе эксперимента ученые использовали несколько дорожных знаков с различными типами надписей, наклеек и граффити. По словам исследователей, в 100% случаев, автомобили распознавали знак «Стоп» с надписями Love\Hate как знак «Ограничение скорости 45», второй и третий знаки также распознавались как «Ограничение скорости 45», но только в 67% случаев. Что касается четвертого знака, его система машинного обучения классифицировала как знак «Стоп» вместо «Правый поворот» в 100% случаев.

Безопасность

В октябре 2017 года, выступая на Всемирном форуме знаний в Сеуле, Южная Корея, главный исполнительный директор Mobileye и старший вице-президент Intel, профессор Амнон Шашуа (Amnon Shashua) предложил автомобильной отрасли способ, позволяющий подтвердить безопасность беспилотных автомобилей. Его решение, опубликованное в научной статье и представленное в кратком изложении этой работы для обывателей, предлагает математическую формулу, используя которую можно подтвердить, что тот или иной беспилотный автомобиль работает с соблюдением норм ответственности и не может послужить причиной аварии, вину за которые можно бы было возложить на этот автомобиль.

Представленная учеными модель Responsibility Sensitive Safety предусматривает конкретные, поддающиеся измерению параметры, характеризующие человеческие представления об ответственности и осторожности, и определяет так называемое «безопасное состояние» (Safe State), поддерживая которое беспилотный автомобиль не может послужить причиной аварии, вне зависимости от того, какие маневры или действия совершают другие транспортные средства.

В своем выступлении Амнон Шашуа призвал представителей отрасли и тех, кто разрабатывает стратегии, «вместе работать над созданием стандартов, которые бы позволяли однозначно устанавливать виновника» при неизбежных авариях с участием автомобилей, управляемых водителями, и беспилотных автомобилей. Он пояснил, что все современные правила и нормативные акты базируются на той идее, что автомобилем управляет водитель, поэтому для регламентирования беспилотных автомобилей в правила необходимо вводить новые параметры.

«Ключевым моментом сейчас является возможность устанавливать виновника аварии. Даже самые лучшие водители в мире попадают в дорожно-транспортные происшествия, и беспилотные автомобили тоже не смогут избежать этой участи из-за действий других участников дорожного движения. Но вероятность того, что ответственный и осторожный водитель попадет в аварию по собственной вине, очень мала, особенно если водителю доступен панорамный обзор, а сам он обладает молниеносной реакцией – как у беспилотного автомобиля», – объясняет Амнон Шашуа. Предложенная модель RSS позволяет формализовать работу беспилотных автомобилей, в результате чего «беспилотники» будут всегда работать только в рамках той модели, которая считается «безопасной», исходя из четких определений вины, и которая одобрена представителями отрасли и регуляторными инстанциями.

Киберугрозы – один из вызовов для любых подключенных устройств, включая автомобили. Глава телекоммуникационной компании SoftBank Масаеси Сон (Masayoshi Son) в конце февраля 2017 года приводил данные, что число кибератак на объекты с интернет-подключением выросло в четыре раза в 2016 году по сравнению с 2015 годом.

В случае с автомобилями это особая причина для беспокойства, так как в результате действий злоумышленников могу пострадать люди. Теоретически, хакер может взломать сеть, остановить передачу данных, выключить тормоза или просто остановить машину.

В середине 2015 года, например, специалисты по компьютерной безопасности Центра передовых технологий Uber обнаружили уязвимость в программном обеспечении автомобиля Jeep, благодаря которой смогли осуществить удаленный доступ к некоторым системам автомобиля: кондиционеру, стеклоочистителям, аудиосистеме и тормозам.

«
Кибер-инциденты – это проблема для любого автопроизводителя в мире. Это вопрос общественной безопасности, - отмечала ранее Мэри Барра, гендиректор General Motors.
»

В компании Argus, специализирующейся на средствах киберзащиты для автомобилей, считают, какой-то единый продукт не может подойти для этих целей: различные решения, предназначенные для разных частей подключенного автомобиля, должны интегрироваться между собой, чтобы была обеспечена полная защита.

Автопроизводители и производители решений для автомобилей инвестируют в развитие этого направления кибербезопасности. Ряд автопроизводителей, включая Tesla, Fiat Chrysler и General Motors, создали специальные программы поощрения лиц, которые сообщат о брешах в безопасности систем своих машин.

Отвечая на запросы рынка, появляется все больше компаний, разрабатывающих специализированные решения для автомобилей. Такое направление появилось, например, и у «Лаборатории Касперского». В 2016 году компания сообщала, что ведет разработку защищенной безопасной операционной системы, которая, в частности, может быть использована для автомобилей.

В 2016 году производитель решений для автомобилей Harman приобрел израильскую технологию кибербезопасности TowerSec для своего защищенного от взлома программного обеспечения. В том же году инвестиции для развития технологий автомобильной киберзащиты получил другой израильский стартап - Karamba Security.

Чья жизнь важнее: водителя или пешехода?

Помимо технологических вызовов для перехода к массовому использованию беспилотников предстоит решить и «моральные» вопросы, связанные с принятием решений автопилотом. Например, должна ли она быть спроектирована таким образом, чтобы защищать жизнь водителя любой ценой, даже если в экстренной ситуации для этого необходимо протаранить толпу пешеходов?

Правила для беспилотных автомобилей в Германии

Федеральное министерство транспорта и цифровой инфраструктуры Германии объявило о намерении ввести в действие дорожные правила для беспилотных автомобилей, их производителей и владельцев. Как пишет летом 2017 года The Register, документ обяжет разработчиков беспилотных автомобилей программировать их автопилот таким образом, чтобы в любой неожиданной ситуации на дороге он ставил человеческую жизнь превыше жизни животных или сохранности частной или государственной собственности[12].

В настоящее время ни в одной стране мира нет единых правил дорожного движения, которые бы регулировали технические требования к беспилотным автомобилям и регламентировали их движение по дорогам общего пользования. Некоторые страны допускают перемещение беспилотных автомобилей по общим дорогам, но в этом случае требуется получение специального разрешения. При этом за рулем беспилотного автомобиля всегда должен находиться водитель, готовый перехватить у автопилота управление в случае какой-либо нештатной ситуации.

Правила для беспилотных автомобилей в Германии были разработаны консультативным советом Федерального министерства транспорта и цифровой инфраструктуры Германии, в который входят 14 ученых и юристов. В общей сложности в список попали 20 требований к беспилотным машинам, их производителям и водителям. Так, требование к ценности человеческой жизни подразумевает, что автопилот в любой аварийной ситуации должен таким образом управлять автомобилем, чтобы сохранить жизнь людей.

В случае двойственной аварийной ситуации, автопилот не должен делать выбор, чью жизнь следует сохранить — водителя или пешехода, пожилого человека или ребенка. Автопилот должен будет сделать все возможное, чтобы сохранить жизнь всех участников аварии. Все беспилотные автомобили, регистрируемые в Германии, должны иметь «черный ящик», записи из которого можно будет использовать после аварии, чтобы выяснить, на ком лежит ответственность за нее — на водителе или на автопилоте.

При этом во всех случаях аварии с участием беспилотного автомобиля будет действовать «презумпция виновности», то есть в аварии всегда будет считаться виновным водитель, пока данные «черного датчика» или другие результаты расследования происшествия не докажут обратного. В число правил также включили исключительное право водителей на выбор информации, которую смогут получать от беспилотного автомобиля его производители. Речь идет о местоположении, скорости, водительских данных и множестве другой информации, которая может быть использована, например, для таргетирования рекламы.

Моральная дилемма

Психолог Школе экономики в Тулузе Жан-Франсуа Бонефон (Jean-Francois Bonnefon) и его коллеги говорят[13], люди в целом поддерживают идею, что в критической ситуации автомобиль должен врезаться в стену или еще каким-то образом пожертвовать водителем, чтобы спасти большее число пешеходов. При этом те же самые люди хотят ездить в автомобилях, которые защищают водителя любой ценой, даже если это повлечет смерть пешеходов.

Такой конфликт ставит в сложное положение производителей компьютеризированных автомобилей, отмечает Бонефон. Между автомобилем, который запрограммирован на благо для большинства и который запрограммирован для самозащиты пассажира, покупатели в подавляющем большинстве выберут второе.

Существует много сценариев экстренных ситуаций, когда автомобилю придется сделать выбор, кем пожертвовать

Авторы исследования о социальной дилемме автономных автомобилей, опубликованного в журнале Science в 2016 году, полагают, что в это области есть и другие сложные моральные вопросы. Автономным автомобилям придется в экстренных ситуациях принимать решения, последствия которых заранее нельзя предсказать. Допустимо ли, например, запрограммировать машину на то, чтобы она избежала столкновения с мотоциклистом, врезавшись в стену? Ведь у пассажира автомобиля в этом случае больше шансов выжить, чем у мотоциклиста, который столкнется с автомобилем.

«
Автономные автомобили могут произвести революцию в транспортной индустрии, но они ставят социальную и моральную дилемму, которая может затормозить распространение этой технологии, - считает Лиад Рован (Iyad Rahwan), ученый из Университета Калифорнии, один из авторов этого исследования.
»

Психолог Курт Грей (Kurt Gray) из Университета Северной Каролины в Чапел-Хил уверен, что можно достигнуть работающих компромиссов. Если беспилотные автомобили и будут запрограммированы защищать пассажира в экстренных ситуациях, число дорожных инцидентов в любом случае снизится. За исключением редких случаев, когда такие автомобили могут представлять опасность для пассажиров, они в любом случае не будут превышать скорость, не будут употреблять алкоголь или набирать текстовые сообщения на ходу, отчего общество, в конечном счете, выиграет.

Мораль искусственного интеллекта — один из самых обсуждаемых вопросов, связанных с наступлением эры роботов. В 2016 году Массачусетский технологический институт (MIT) в США разработал специальный тест, который помогает лучше понять, с какими моральными дилеммами сталкиваются разработчики искусственного интеллекта, а заодно разобраться со своими нравственными ориентирами[14].

Тест очень простой. В нем надо поставить себя на место искусственного интеллекта самоуправляемой машины и выбирать, кем в ДТП можно пожертвовать — пешеходами на перекрестке или пассажирами в автомобиле. Иногда надо выбирать между тем, кого из пешеходов надо задавить, а кого — спасти.

Всего в тесте 13 вопросов. Количество пассажиров и пешеходов в некоторых задачах разное, в некоторых — одинаковое. Кроме того, отличается их возраст, пол, социальное положение. В некоторых вопросах есть домашние животные — они приравнены к другим пассажирам и пешеходам.

Для примера возьмем следующую задачу: в машине сидят женщина и двое детей (мальчик и девочка), а по пешеходному переходу идут женщина и две старушки. Необходимо выбрать, кого из них искусственному интеллекту спасать, а кем — жертвовать.

В конце теста пользователю рассказывают, кем он жертвует чаще всего и как отвечали другие люди, которые прошли тест.

На сайте MIT можно также придумать собственную моральную задачу на основе вопросов теста и посмотреть, какие вопросы поставили другие пользователи.

Законодательство

Помимо технологических вызовов, для перехода к массовому использованию автономных автомобилей предстоит решить множество вопросов на уровне законодательного регулирования. Необходимы нормативные документы, определяющие основные технологические и юридические понятия в данной сфере, регулирование возможностей использования таких технологий в целом, ответственности в случае инцидентов с беспилотными автомобилями и др.

В том или ином виде нормативные документы в этой области уже представлены или разрабатываются в некоторых странах. Особенно продвинулась вперед здесь США. Невада еще в 2011 году стала первым штатом в стране, начавшим регулирование использования автономных транспортных средств на дорогах и вопросов, связанных с их страхованием, безопасностью и тестированием.

Условия передвижения беспилотных автомобилей разной степени свободы теперь уже законодательно закреплены в разных штатах США. В 2015 году губернатор Аризоны, США, подписал приказ, согласно которому беспилотные автомобили в штате регистрируются на тех же условиях, что и обычные машины. Никаких дополнительных требований к автономным машинам не предъявлялось. Кроме того, законы штата не запрещают испытание беспилотных автомобилей на дорогах.

В конце 2016 года губернатор штата Мичиган подписал пакет законов, который напрямую касается сферы беспилотных автомобилей и фактически легализуют их частное и коммерческое использование. Они позволяют продажу серийно выпускаемых беспилотных автомобилей, прошедших сертификацию, при этом автомобилям разрешено выезжать на дороги общего пользования без водителя за рулем и передвигаться в автоколоннах. Кроме того, на территории штата теперь разрешено использовать беспилотное такси.

В Британии в 2016 году начали подготовку поправок в законодательство, которые должны, во-первых, позволить страховать ответственность беспилотных машин, а во-вторых, обновить Дорожный кодекс (свод ПДД Великобритании) с учетом развития автономных транспортных средств.

Новости и модели производителей

В мире

В России

Беспилотные автомобили в России

Основная статья: Беспилотные автомобили в России

С 2015 года компании в России активно развивают технологии, необходимые для создания беспилотных автомобилей.

Мировой рынок

Основная статья: Беспилотные автомобили (мировой рынок)

Создание полноценного беспилотного автомобиля - один из самых захватывающих вызовов для технологической мысли начала XXI века для компаний по всему миру.

Смотрите также

Робототехника



Примечания